Elliptic Triangulations of Spheres
 P. Elango

Department ofMathematical Sciences, South Eastern University ofSri Lanka,
Corresponding Author: elango@seu.ac.lk

The degree of a vertex x in a triangulation T of a sphere is the number of triangles 01 , $(52, \ldots$, which contain x and is denoted by $d=d(x)$. A triangulation T is said to be elliptic if it does not contain any point with degree greater than 6 , that is, $\mathrm{d}(\mathrm{x})<6$ for every x e T. We used Euler's equation to get

$$
3 \mathrm{a} 3+2 \mathrm{E} 4+-\quad-2 \mathrm{E} 8-\quad(\mathrm{m}-6) \mathrm{am}=12
$$

which reduces to

$$
3 \alpha_{3}+2 \alpha_{4}+\alpha=12 \text { in the elliptic case. There are }
$$

19 nonnegative solutions ((13 [14, as) for this equation.
We call ct4, as) is the type of the triangulation T. It has been shown that for each of the solution $((13114$, as) there exist a triangulation T and a non negative integer $\mathrm{N}=$ (. 160 with the property

$$
(\mathrm{E} 3(\mathrm{~T}), \mathrm{a} 4(\mathrm{~T}), \quad \mathrm{E} 6(\mathrm{~T})=(\mathrm{a} 3, \mathrm{a} 4,115,(16) .
$$

Our main aim was to find, for each of the 19 types of triangulations, all possible values of $\mathrm{N}=\mathrm{a} 6$. We describe various methods to construct elliptic spherical triangulations such as the mutant, productive and self-reproductive configurations, the fullering constructions and the glueing of patches method.

We remark here that some non-existence results on triangulations have been obtained by Grunbaum, Eberhard, and Bruckner have determined the minimum values of N such that
the triangulations of type $\left(a_{3}, a_{4}, a_{5}, N\right)$ exist for each of the 19 nonnegative solutions $\left(a_{3}, a_{4}, a_{5}\right)$.

Key Words: Polygon, Triangulations, Patches
the triangulations of type (C 13 ct 4 , as N) exist for each of the 19 nonnegative solutions

